N87-29185

Supercomputing on Massively Parallel Bit-Serial Architectures

Consider the 1dea that supercomputing 1is a synergy of generic
algorithms, languages and architectures and that real breakthroughs in
parallel computing will be achieved by considering all three together 1in a
simulated software environment. Engineering tradeoffs could be made between
performance, machine transparency, standardization and program portability
before any new machines are actually built. Standardized languages could be
developed for generic subclasses of parallel machines; languages that really
give high peformance and encourage free parallel expression and "thinking in
parallel".

My own research on the Goodyear MPP (Massively Parallel Processor),
suggests that high-level parallel languages are practical and can be
designed with powerful new semantics that allow algorithms to be efficiently
mapped to the real machines. For the MPP these semantics include parallel/
associative array selection for both dense and sparse matrices, variable
precision arithmetic to trade accuracy for speed, micro-pipelined "train"
broadcast, and conditional branching at the PE control unit level.

The preliminary design of a FORTRAN-like parallel language for the MPP
has been completed and is being used to write programs to perform sparse
matrix array selection, min/max search, matrix multiplication, Gaussian
elimination on single bit arrays and other generic algorithms. The MPP
timing estimate for Gaussian elimination of a 4K by 4K single bit matrix is
under one second -- the equivalent of approximately 64 billion scalar
operations. Parallel Gauss-Jordan matrix inversion is also being investi-
gated. The estimated time to invert a 128 X 128, 32 bit real matrix using
full pivoting on the MPP is 50 msec. This 1s roughly equivalent to a 100
MFLOP scalar rate.

The MPP is a SIMD machine of 16384 single bit processors arranged in a
128 X 128 array. Individual PE’s are interconnected with their four nearest
neighbors. Each PE can address 1024 bits of its own local memory. A 32 bit
shift register in each PE allows for micro-pipelining of long words and
faster partial sum accumulation for multiplication. The machine can execute
160 billion micro-instructions per second which translates to 800 GOPS for
some instructions. Operations include single bit logical, shift, and add as
well as column I/0 and one or two dimensional routing in a spiral,
cyclinder, or torus. All operations can be directly or indirectly masked.
The logical "or" of one bit per PE (SUMOR) can be used to pass array
information back to the PE control unit for broadcast to other PE’s, scalar
1/0 or conditional branching. If a second MPP were ever built, it might
look considerably different than the current MPP. For example, it would
certainly have greater memory depth -- at least 64K bits per PE. It might
also have a reconfigurable bit/byte serial ALU, staged PE’s for table lookup
arithmetic, and pipelined SUMOR logic.

Ken Iobst
4/15/85

PRECEDING PAGE BLANK, NOT FILMED

BAGE /- /44 INTENTIONALLY BLANK 1-145

N

r\\f\r

SUPERCOMPUTING ON MASSIVELY PARALLEL
BIT-SERIAL ARCHITECTURES

SUPERCOMPUTING DOMAIN

NEW DIMENSIONS IN PARALLEL COMPUTING
SOME GENERIC ALGORITHMS

THE GOODYEAR MPP

SOME MPP SPECIFIC ALGORITHMS CODED IN A FORTRAN-LIKE
BIT-SERIAL PROGRAMMING LANGUAGE

WHAT MIGHT A SECOND GENERATION MPP LOOK LIKE?

1-146

SUPERCOMPUTING DOMAIN

PARALLEL
PROGRAMS

ARCHITECTURES

STANDARDI ZAT 10N
|
HARDWARE CAPABILITIES

<

SIMULATED SOFTWARE ENVIRONMENT

1-147

DESIGN SPEC’S
FOR NEW MACHINES

NEW DIMENSIONS IN PARALLEL COMPUTING

BIT-SERIAL

—

¢ DIVISION BY 27"#1

MIN/MAX SEARCH
MATRIX MULTIPLICATION
COLUMN BROADCAST

l GAUSSIAN ELIMINATION

PARALLEL

7

|
l
|
l
|
S

1-148

7

/

—

08L/ 11-XYA
\:Hm LAdwod JSH
| e
% &
1&2&: INIIYLS

1-149

—

S3I¥IM
821

\ﬁ. % JCR Y17
7 STIYNDIS
W\.ﬁ” TOILNOD

+3 € 91

\

=1031NOD
AY¥3Y

10,000

E

3

MILLIONS OF OPERATIONS PER SECONB

10

2603
MPP PerroRMANCE WITH INTEGER OPERANDS

128 x 128 ARRAY
10 MH2 CLOCK RATE

ADD ARRAY TO ARRAY
SUBTRACT ARRAY FROM
680 ARRAY

/0

OPERAND WORDLENGTHS, BITS

1-150

850

MULTIPLY ARRAY 1867
— BY ARRAY
82
58
4y

34
| | | | | | 1
8 16 24 32 40 48 56 64

DIVISION BY 2% EXAMPLE

FROM THE BINOMIAL THEOREM,
|

= \1)6-9-)(7—.'{_7(34— seo e (xz< l)

| £ x

BY A CHANGE OF VARIABLE t7='%z THEN
I I N 3
g0 Ty ry o o)

NOW LET Y=2" AND DIVISION BY 2 *)
REDUCES TO A SHORT SEQUENCE OF BINARY
SHIFTS AND ADDS (AND/OR SUBTRACTS),
;IC—— = .:2:_ - v -
J‘Htl 1-,\ -+ \2——7—;: 4—;}—: s 0@
FOR EXAMPLE, LET V = 237658 AND N = 10
THEN

2(S
f%E:;~ = E:i_ji_j? = 232. 3|5
2 -1 1023

AFTER 3 SHIFTS AND 2 ADDS

1-151

THE GOODYEAR MPP

SIMD MACHINE OF 16384 SINGLE BIT PROCESSORS ARRANGED IN A
128 X 128 ARRAY

NEAREST NEIGHBOR INTERCONNECTIVITY
1024 BITS OF MEMORY PER PE

32 BIT SHIFT REGISTER ALLOWS FOR MICRO-PIPELINING AND
FASTER MULTIPLICATION

EXECUTION SPEED OF 160 BILLION MICRO-INSTRUCTIONS PER SECOND
WHICH TRANSLATES TO 800 GOPS FOR SOME INSTRUCTIONS

OPERATIONS INCLUDE SINGLE BIT LOGICAL, SHIFT, AND ADD AS
WELL AS COLUMN [/0 AND ONE OR TWO DIMENSIONAL ROUTING IN
A SPIRAL, CYLINDER, OR TORUS

ALL OPERATIONS CAN BE DIRECTLY OR INDIRECTLY MASKED

THE LOGICAL "OR" OF ONE BIT PER PE (SUMOR) CAN BE USED TO

PASS ARRAY INFORMATION BACK TO THE PE CONTROL UNIT FOR
BROADCAST, SCALAR 1/0, OR CONDITIONAL BRANCHING

1-152

AYOWIH Id — 3d
SSIYAOVTH ¢5379v-WoaNvY 15v3 o1 S 1SIN WOYd
F ﬂ 1391 ~_»c-:=m 0L
 y ¥
(0) sng viva
71901
Y
>
9 =] —»"Y 4N
-+ A
T3 D (0c 40 92'22°8l I
Y Yy VL OL' 9 2=N)
SNSVH X
. : v lle—]l o3 s fle
119-N
! 5
_— ¥300v 1103
AUYYD WNS

(S,3d) SIN3IW3NI 9NISSII0OUd ddW h8£9T 40 3INO

PARALLEL/ASSOCIATIVE ARRAY SELECTION

MPP
CONTROL UNIT

MPP ARRAY

REAL S(8:24),Al64,2561(8:24)

S=SUMOR(A[64,256])

1-154

; MAXIMUM OF 32 BIT INTEGER ARRAY
l (OF UNIQUE VALUES)

BIT MAX[] ; DEcLARE MAX AS BIT MASK
OVER ALL PE’s

INTEGER A[128,128](0:32) ; DEcLARE A As A 128 X 128
UNSIGNED INTEGER ARRAY

MAX=1 ; INITIALIZE MAX TO 1 OVER
ALL PE’'s

DO 1 [=1,32 ; SCAN BITS IN A FROM MOST

TO LEAST SIGNIFICANT BITS

IF (SUMORCAIMAX](I))) MAX=A[MAX](I) ; RepLAce MAX WITH A NEW
SUBSET OF MAXIMUM VALUES
FOR EACH NON ZERO BIT
PLANE OF A

1 CONTINUE

MAXIMUM OF 32 BIT INTEGER ARRAY
(GENERAL CASE)

BIT MAXT 1,T[1Cu6),INDEX[1(1®)

INTEGER A[128,128](0:32)

COMMON /INIT/ INDEX ; SAME ALGORITHM AS BEFORE
EXCEPT A ARRAY IS FIRST
CONCATENATED WITH THE

PE ADDRESS FIELD TO INSURE

UNIQUENESS OF RESULT
MAX=1

T=A.CON. INDEX

DO 1 [=1,4

[F (SUMOR(CTIMAXICD))) MAX=T[MAX](D)
1 CONTINUE

1-155

MATRIX MULTIPLICATION EXAMPLE

—

r - /
=

gt

8!lx9l§3

N

Caxizg &

REAL A[8,16,128](8:32),B(8,16,128](8:32),
& C(8,16,1281(8:32),T(8,16,1281(8:32)

READ A[,,1],BI1,,]
T=A(,,1...1*B[1...,,]
C=T(,+,]

PRINT C[,1,]

1-156

COLUMN BROADCAST EXAMPLE

Ay = .
T 128 X 128
A;; '-'Au
REAL A[128,128](8:32)
A=AL,d...]
0R

REAL A[128,128](8:32)
BIT M[]
M={128,128;,J]

A=A[.NOT.M][,128 =]

1-157

COLUMN BROADCAST EXAMPLE

PROBLEM: TO BROADCAST A COLUMN OF FLOATING POINT NUMBERS
ACROSS THE MPP ARRAY

SOLUTION #1:

SOLUTION #2:

WITH PE’S INTERCONNECTED IN AN E/W CYLINDER;
LOAD, SHIFT AND STORE THE 32 BIT VALUES
ACROSS THE ARRAY. THIS TAKES APPROXIMATELY
3 X 32 X 128 = 12288 CYCLES.

WITH PE’S INTERCONNECTED IN AN E/W CYLINDER;
"TRAIN" BROADCAST THE 32 BIT VALUES ACROSS

THE ARRAY. THIS CAN BE VIEWED AS A MICRO -
PIPELINING OPERATION AND TAKES ONLY 207 CYCLES.
THE ALGORITHM IS AS FOLLOWS:

® GET “TRAIN" OF 1 STOP BIT + 32 BIT VALUES
OUT ONTO THE E/W PE CHANNEL (= 33 CYCLES)

0 CIRCULATE “TRAIN” ONCE AROUND (= 128 CYCLES).
DURING THIS PROCESS INDIVIDUAL PE’S WILL
STORE THE “TRAIN" IN THEIR SHIFT REGISTERS.
SHIFTING STOPS WHEN THE STOP BIT ENTERS THE
CONDITIONAL MASK REGISTER OF EACH PE.

0 STORE ALL SHIFT REGISTERS (= 32 CYCLES).

1-158

GAUSSIAN ELIMINATION EXAMPLE

SINGLE BIT MATRIX

R CALE; 1os

Yoigl%| %[%]

N

L

i | | Lo

{ |

A N

gl I

S

iliil

e

B

. T—~—_4000 X 4000

o 1 OF 1000 \\\\“‘\\\\\\
BIT PLANES T~
10411 /z I; %’oﬁl olzye-’ oo

MPP ARRAY

1-159

128 X 128

GAUSSIAN ELIMINATION EXAMPLE

BIT A[4000,4](1000),M(4000,4],USED(4000)
INTEGER PIVOT(4000,0:14),J1(0:2),J2(0:12),J(0:14)
EQUIVALENCE (J1,J4(1)),(J2,4(3))

READ A
DO 1 I=1,4000
USED(D)=0

1 CONTINUE
DO 7 I=1,4000
D0 2 J2=1,1000

IF (SUMORCA[T,1(J2))) GO TO 3

2 CONTINUE
G0 TO 8

3 CONTINUE
DO 4 JI=1,4

IF (SUMORCA[I,J11(J2))) GO TO S

4 CONTINUE

5 CONTINUE
PIVOT(D)=J
USED(J)=1

M=A[1(J2).AND..NOT.[4000,4;1,J1)

DO 6 J2=1,1000

Al 1(J2)=Al 1(J2).XOR.M[,J1...]

6 CONTINUE
/ CONTINUE
8 CONTINUE

1-160

r

P

’

r

; READ IN ARRAY
; INITIALIZE HISTORY MATRIX

SEARCH FOR A 1 IN Row |
IN STEPS OF 4 COLUMNS

Row oF aLL Q’'s - exIT

; FIND WHICH COLUMN OF 4

SAVE HISTORY INFORMATION

; SAVE PIVOT COLUMN IN NEW

MATRIX M, ZEROING THE PIVOT
ROW VALUE

ELIMINATE 4 COLUMNS AT A TIME
BY BROADCASTING THE PIVOT
COLUMN ACROSS THE M ARRAY

6AUSS-JORDAN MATRIX INVERSION

WITH FULL PIVOTING

1-161

PARALLEL DATA STRUCTURES

REAL ARRAYS

U=T0A: 11 AUGMENTED MATRIX

V=101 : 1 WORKING ARRAY
W=1 :] WORKING ARRAY
BIT MASKS

X=101:01 PIVOTED ROW/COLUMNS

Y=[1:11 PIVOT ROW

WHERE 1 IS THE IDENTITY MATRIX

1 IS THE UNITY MATRIX

0 IS THE ZERO MATRIX

1-162

OTHER DATA STRUCTURES

SCALARS

DET = 1 PIVOT

1-163

PARALLEL APPROACH TO MATRIX INVERSION

REPEAT FOLLOWING STEPS N TIMES

FIND NEXT PIVOT

UPDATE DETERMINATE (OPTIONAL)

ZERO PIVOT ROW AND COLUMN IN X

ZERO PIVOT ROW IN Y

NORMALIZE PIVOT ROW IN U

BROADCAST PIVOT ROW N TIMES INTO Vv
BROADCAST PIVOT COLUMN 2N TIMES INTO W
PERFORM PARALLEL ROW OPERATIONS FOR A
SINGLE PIVOT

RESET PIVOT ROW IN Y

THEN REORDER ROWS IN U TO FORM

U=01:at

1-164

t

FOR 1

PARALLEL MATRIX INVERSION ALGORITHM

=]1T0N

PIVOT = MAX|u] PER X
DET = DET * PIVOT

X

Y

W

[] -y

+

|ﬂ

1l|
|

-
-

o) | .
I I

U=U-V *NWPERY

END 1
FOR J

=1T0N

FOR I =1 TO N
IF UCI,J1 =1 THEN V[J,*] = ULI,*]

END I

END J
U=y

1-

165

/ PIVOT

MPP I1:
WHAT MIGHT IT LOOK LIKE?

MUCH GREATER MEMORY DEPTH: AT LEAST 64K BITS
PER PE, WITH AT LEAST ONE LEVEL OF INDIRECT
ADDRESSING.

RECONFIGURABLE BIT/NIBBLE/BYTE SERIAL ALU

STAGED PE’S FOR TABLE LOOKUP ARITHMETIC.
HOW MANY TABLES? WHAT SIZE? RAM OR ROM?

PIPELINED SUMOR LOGIC

1-166

